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Dispersive Chaos 

James A. Glazier, t Paul Kolodner, 1 and Hugh Williams 1 

"Dispersive chaos" refers to a dynamical state in which repetitive pulsing caused 
by strong nonlinear dispersion produces continuously erratic spatiotemporal 
behavior. We have observed this behavior in experiments on one-dimensional 
traveling-wave convection in an annular container. Based on measured physical 
parameters, this system can be modeled by a complex Ginzburg-Landau equa- 
tion in the limit of strong nonlinear dispersion. The experimental observations 
are reminiscent of numerical simulations in this limit. 

KEY WORDS: Traveling-wave convection; nonlinear dispersion; Ginzburg- 
Landau equation. 

In this paper, we report experimental observations of dynamical states of 
weakly nonlinear, one-dimensional traveling-wave (TW) convection in 
annular containers. These states are strikingly different from those seen in 
rectangular containers. In a rectangular geometry, nonlinear competition 
between counterpropagating waves, which is enforced by the presence of 
reflections from the endwalls of the cell, dominates the dynamics. This 
competition leads to a regular alternation of wave energy between the two 
oppositely-propagating wave components that has been called "blinking" 
or "sloshing. ''(I) In annular containers, there are no such reflections, and it 
is possible to create a unidirectional TW state. However, even in the 
absence of a counterpropating wave, there is no stable, saturated weakly 
nonlinear state in an annular container. Instead, we observe a continuously 
erratic dynamical state in which the repetitive formation and abrupt 
collapse of narrow spatiotemporal pulses is characteristic. By measuring 
the physical parameters of the system and comparing our results with 
numerical simulations of the complex Ginzburg-Landau equation in the 
same parameter limit, we can identify the cause of this behavior as strong 
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nonlinear dispersion. We thus refer to this dynamical state as "dispersive 
chaos." 

The characteristics of this physical system and the experimental 
techniques we use to study it have been described in several recent publi- 
cations.(1 3~ For appropriate parameters, a thin, horizontal layer of a 
binary fluid which is heated from below suffers an instability to traveling 
waves. (4~ Just above the onset of this instability, a variety of nonlinear 
states can occur. The principal control parameter is the Rayleigh number 
R, which is proportional to the temperature difference applied vertically 
across the layer. The onset of the oscillatory instability is denoted Rco. In 
this paper, we quote the fractional distance above the onset of convection, 
defined as ~ - ( R  - Rco) /Rco.  The most important thermodynamic property 
of the fluid is its separation ratio 0, which measures the influence of Soret- 
induced concentration diffusion on the stratification of density across the 
layer. The experiments reported in this paper employed ethanol/water 
mixtures with separation ratios (5~ 0 = - 0 . 0 2 1 ,  -0.041, -0.050, and 
-0.069. 

The convection containers consist of narrow channels in plastic plates 
clamped.between a mirror-polished bottom plate and a transparent top 
plate. Cooling water circulates over the top plate, and the bottom plate is 
heated electrically. We visualize the convection patterns by shadowgraphy 
from above. (3/ The patterns are always one-dimensional, consisting of 
superpositions of waves which propagate in opposite directions parallel to 
the long dimension of the cell. We denote the two directions of wave 
propagation by "left" and "right." The spatial profiles of the oppositely- 
propagating wave amplitudes are calculated as functions of time using 
complex demodulation of data acquired by an annular camera which views 
the shadowgraph image/3) 

The procedure we use in these experiments is similar to that reported 
previously. (1-3) We begin by determining the onset of convection. First, the 
temperature difference A T applied vertically across the cell is increased in 
small jumps until oscillations caused by the linear TW instability are 
observed. Then, the computer which controls the annular camera begins 
computing a wave-amplitude signal, which is set equal to the sum of the 
spatially-integrated left- and right-wave amplitude profiles calculated using 
complex demodulation. The temperature difference A T  is then adjusted 
periodically to keep the wave-amplitude signal constant. This system servos 
the cell at the convective threshold of the linear instability, defining e ~- 0. 
Once the onset has been accurately measured, the servo is disabled, e is 
increased to some desired value, and the dynamical evolution at constant 

is observed. 
In rectangular cells, the first nonlinear state seen upon raising the 
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Fig. 1. Spatiotemporal behavior in a "blinking" state created at ~ = 3 x 10-4 in a rectangular 
container, with ~, = -0 .021.  In each frame, the amplitudes of the left-going (dashed curves) 
and right-going (full curves) wave components at a particular time are plotted as functions of 
position of the cell, whose edges are delimited by the black horizontal bars. Time proceeds 
upward, and the entire figure covers one-half of a blinking cycle. The blinking consists of a 
periodic exchange of wave amplitude between the two wave components. 
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Rayleigh number to within a narrow range above onset consists of 
"blinking": wave energy oscillates slowly back and forth across the cell. (1) 
Figure 1 shows an example of the demodulated wave profiles in this state. 
Cross (6) has seen remarkably similar behavior in numerical simulations of 
coupled Ginzburg-Landau equations with real coefficients. The cause of 
the blinking is the saturating nonlinear competition between oppositely- 
propagating wave components, represented in the equations by cubic cross- 
terms. The presence of one wave component tends to suppress the 
amplitude of the other. However, reflection of the dominant component 
from the endwall of the cell continues to feed energy into the suppressed 
component, which gradually grows until the roles of the two components 
reverse. This leads to slow oscillations on a time scale whose experimental 
dependence on ~ can also be understood in the context of coupled 
Ginzburg-Landau equations using marginal-stability arguments. (7) 

In an annular container, reflections of TW are weak, since they can 
only be caused by imperfections in the cell. It is therefore possible to create 
a unidirectional TW state. (8) Figure 2 shows that the evolution of such a 
state following a jump to slightly above the onset of convection consists in 
the formation of a spatially-localized pulse which then collapses abruptly. 
This dynamical event is independent of the state of the opposite wave 
component. Between the times of its formation and collapse, the pulse is 
observed to propagate at a roughly constant velocity s which is substan- 
tially lower than the group velocity of the linearly unstable waves seen at 
onset. As shown in Fig. 3, the subsequent evolution of a unidirectional state 
consists in repeated pulsing, at apparently random places in the cell, with 
little or no excitation of the opposite wave component. Similar behavior 
occurs in runs in which the two wave components start with comparable 
amplitudes (Fig. 4). 

Figure 5 shows the time history of the spatially-averaged wave 
amplitudes in an initially left-going state. Wave energy builds up only 
slowly in the right-wave component, indicating that reflections o r  nonlinear 
interactions between the two waves are weak. At later times, the spatially- 
averaged wave amplitudes in the resulting bidirectional state exhibit some 
correlation in time, but little in space. The two wave components appear 
to evolve independently. 

The key to the origin of this erratic, repetitive pulsing behavior lies in 
the roles of nonlinear damping and dispersion, as represented by the real 
and imaginary parts of the cubic coefficient in a complex Ginzburg- 
Landau model for the amplitude of a unidirectional TW state: ~ 

OA OA 02A '1 2A O--~+S~x=A+(l +icl)~xz-g( +ic2)lAI (1) 
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Fig. 2. Hidden-line plots showing the spatiotemporal behavior of the right-going (top) and 
left-going (bottom) wave amplitude profiles in an annular cell, with ~, = -0.021, following a 
jump in the Rayleigh number from just below the onset of the TW instability (at e --- 0) to just 
above (~ = 2.4 x 10-4). The traces in these plots show the wave amplitude as a function of 
position at subsequent times, with time proceeding upward. An initial, nearly-uniform, small- 
amplitude, unidirectional state of linear waves grows up into a double-humped spatial pulse 
which fills about half the cell. This pulse later collapses everywhere in space and then grows 
up again somewhere else. The left-going wave component remained at zero amplitude during 
this run. After ref. 8. 
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Fig. 3. Evolution of a nearly undirectional pulsing state at ~ = -0.021, at a higher Rayleigh 
number (e = 1.3 x 10 -3) than in the previous figure. The state of the right-wave component 
consists in repeated episodes of pulse formation and collapse at spatial locations which appear 
random. In contrast, the left-wave component exhibits only three isolated pulses. 
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Fig. 4. Hidden-line plots showing the spatiotemporal behavior of the right (top) and left 
(bottom) wave components  during a run at e =  5.9x 10 -3, with 0 = - 0 . 0 2 l .  Both wave 
components  exhibit a profusion of strongly localized pulses, and the evolutions of the two 
components  appear to be independent. After ref. 8. 
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The scaling of this equation has been chosen so that g = +1. Below, we 
show that g = - 1 .  Higher-order nonlinear terms also appear to be negli- 
gible (see below). Because the two wave components evolve independently, 
we have not included in Eq. (1) any terms which represent their inter- 
action. (6) Thus, this equation can be transformed into a comoving frame 
where the group velocity s vanishes. 2 

The linear dispersion coefficient cl has been calculated (~~ and 
measured, ul) In all of our experiments, cl is quite small. As we detail 
below, we find erratic pulsing behavior with much in common with that 
described above for fluids with cl in the range - 0 . 0 2 8  to +0.022. This 
suggests that, for small Ic~l, the sign of the linear dispersion is not 
important for the existence of this kind of dynamical behavior. 

2 The justification for transforming away the convective term in Eq. (1) is made somewhat 
subtle by the fact that the experiments are conducted above the threshold for the convective 
instability to linear TW, which propagate much faster than the pulse velocity s. However, 
immediately after the formation of a spatially-localized pulse in this system, the amplitude 
of fast, linear TW in the rest of the cell is quite small. The duration of the nonlinear pulses 
is short enough that the linear TW excited by noise in the rest of the system never have 
enough time to be amplified to observable amplitudes. Thus, the only important nonlinear 
dynamics in this system are those of the pulses themselves, for which there exists a unique, 
comoving frame. 
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F i g .  5. Spatially-averaged right-wave (full curve) and left-wave (dashed curve) amplitudes 
plotted as functions of time during a run with ff = - 0 . 0 4 1 .  The Rayleigh number was raised 
from e = 0 t o  e = 4 .3  x 1 0  - 4  a t  t =  0.  Initially, all the wave amplitude was in the left com- 
ponent, but the right-wave component slowly grew to a comparable amplitude. The sub- 
sequent evolution of both components (not shown) was similar to that shown here for the 
left-going wave, with incomplete temporal correlation between the two waves. 
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We are also able to measure the nonlinear frequency-renormalization 
coefficient c2 and compare our results with recent theoretical calculations. 
If we substitute a solution of the form 

A(x,  t) = exp[(? + if2)t + (2 - iAk )x ]  (2) 

into Eq. (1), we obtain 7 ( A ) = 7 o - g l A I  2 and C 2 ( A ) = Q o - g c 2 1 A I  2. Here, 
7o, the growth rate at infinitesimal amplitude, and f2 o, the Hopf frequency, 
depend on the Rayleigh number, on the spatial growth rate 2, and on the 
wavenumber Ak. Thus, as a small-amplitude, unidirectional TW grows in 
amplitude above onset, its growth rate and frequency should exhibit 
quadratic dependences on the amplitude which in turn yield the sign of the 
coefficient g and the value of c2. Figure 6 shows the shadowgraph light 
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Fig. 6. The image intensity at a single spatial point (top) and its oscillation frequency 
(bottom) as functions of time during the growth of a unindirectional TW state with 

= -0.021. Initially, the Rayleigh number  was held near onset, so that the amplitude of the 
TW remained small. Then, at time t - 1 7 . 5  hours, the Rayleigh number  was raised to 

= 3 x 10 4 resulting in a burst of amplitude and a drop in frequency due to nonlinear 
frequency renormalization. 



9 5 4  G l a z i e r  et  al.  

intensity signal measured at a single spatial point  during the growth near 
onset of such a state along with its oscillation frequency. Initially, the 
amplitude is small, and the oscillation frequency is equal to the Hopf  
frequency/20.  Then, after the Rayleigh number  is increased, the frequency 
decreases abrupt ly  as the amplitude grows into a pulse. In Fig. 7, we plot 
the growth rate and frequency as functions of the square of the oscillation 
amplitude. We find an approximately linear relationship for small 
amplitudes, as expected, and that g = - 1 .  Averaging over several such 
measurements,  the ratio of the slopes of linear fits to the two functions 
yields c 2 = - 7 . 2  _+ 1.5 for ~ = -0.021.  This is close to the theoretical result 
C 2 = --9.84. O 2)'3 

The large magnitude of c2 places our  experiments firmly in the limit of 
strong nonlinear dispersion. Because Ic21 ~>1, we suggest that  these 
experiments can be modeled by neglecting the real part  of the cubic term 

3 The calculated values for c 2 quoted here have been provided to us by W. Sch6pf. 
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Fig. 7. The growth rate 7 (top) and oscillation frequency /2 (bottom) as functions of the 
square of the signal amplitude for the data in Fig. 6. Both exhibit a component proportional 
to [A[ 2, and the two slopes determine the sign of the saturation coefficient g and the value of 
the nonlinear frequency-renormalization coefficient c2. 
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in Eq. (1), as well as higher-order nonlinear terms. Furthermore, because 
the data continue to exhibit erratic pulsing behavior when cl is changed 
from slightly positive to slightly negative (see below), we suggest that 
changing the sign of cl will not affect the applicability of Eq. (1) to this 
kind of dynamical state, for small ]c11. If we then take the complex con- 
jugate of Eq. (1), we arrive at the equation that was studied by Bretherton 
and Spiegel/13) For cl = 1, these authors observed the same kind of pulsing 
behavior seen in our experiments. They argued that the reason for this 
pulsing is the strong nonlinear dispersion, which causes spatial nonuni- 
formities to sharpen, and the absence of real nonlinear saturation, which 
causes the resulting pulses to grow to large amplitude before collapsing. 
Thus, the resulting state of continuously erratic pulsing can be called 
"dispersive chaos." The neglect of a destabilizing cubic nonlinearity and the 
assumption of very strong linear dispersion may seem inappropriate to our 
experiments. However, the large value of c2 and the qualitative similarity 
of the dynamical states seen in these experiments to those in ref. 13 suggest 
that the experimental behavior is also caused by the strong nonlinear 
dispersion. 

This interpretation has recently been put on a firmer basis by the work 
of Sch6pf and Kramer, ~14~ who retained the destabilizing real part of the 
cubic term in Eq. (1) and numerically surveyed the dynamical behavior 
over a wide range of cl and c2, including the region near cl = 0 in which 
we conducted these experiments. They found that, for sufficiently large [c21, 
nonlinear dispersion balances the destabilization and leads to the existence 
of bounded, chaotic solutions over a large region of (cl, c2) space. Below, 
we describe experiments in which we change the values of c~ and c2 by 
changing the experimental fluid. For values inside the bounded-chaotic 
region of ref. 14, we continue to observe erratic pulsing behavior. Outside 
this region, we observe a completely different behavior. On this basis, we 
claim that our results also exhibit "dispersive chaos." This behavior is not 
observed in rectangular containers, because of the strong damping due to 
the loss upon reflection of waves from the endwalls of the cell. ~15) 

For the separation ratio ~ = - 0 . 0 2 1  at which most of the results 
exhibited so far were obtained, the linear dispersion coefficient cl = +0.022. 
As ~ is made more negative, Cl passes through zeroJ 1~ However, the more 
noteworthy parameter change is that c 2 becomes less negative. ~2) Thus, by 
decreasing ~, we expect at some point to arrive in a regime where non- 
linear dispersion is no longer important. This crossover is indeed observed. 
Figure8 shows the dynamics for ~ = - 0 . 0 4 1  (c~=-0 .015  (~~ and 
c2=-7.39~12)). For e~> l .7x l0  3, the amplitude peaks are strongly 
isolated in space and time and are much stronger than the background. We 
could characterize this state as one in which large fractions of the cell are 
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inactive for long times, while the state in Fig. 4 is one in which most of the 
cell is active most of the time. Alternatively, the state in Fig. 8 could be 
described as exhibiting an essentially bimodal pulse-height distribution, 
because a substantial fraction of spacetime is filled with "peaks" of zero 
height. In Fig. 4, the peak-height distribution is more nearly unimodal, 
since most of the cell is nearly always filled with peaks having a similar 
height. States of this "unimodal" type have also been observed for 
tp = -0.041,  at ~=  1.1 x 10 -3 and e =  1.2 x 10 3. 
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Fig.  8. Spatiotemporal behavior of a dispersively chaotic state in a fluid with t) = 0.041,  at 
= 1.7 x 10 3. Sharp, isolated peaks are seen in both wave components at this and higher e. 
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For larger 10t ( ~ =  -0.050, cl = - 0 . 0 2 8 ,  c2= -6.69), we again see 
erratic states which resemble those in Figs. 4 and 8. We have also seen the 
state shown in Fig. 9, which exhibits a rather broad distribution of peak 
heights. 

We have not conducted a systematic exploration of nature of the 
dynamical states possible at all value of e and 0. However, we can make 
some general statements. First, while there are some qualitative differences 

l I I I 

~4o 

~- 2 0 )  

O o 90 ~ 180 ~ 270 ~ 360 ~ 
POSITION IN CELL 

Fig. 9. Spatiotemporal behavior of a dispersively chaotic state at ~= l.Sx 10 -3, with 
~=-0 .050 .  Tall, broad peaks, some with double humps, coexist with a low-intensity 
background. 
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between the dynamical states seen at different 0, it should be stressed that 
they all exhibit the same basic "pulse-and-collapse" scenario caused by 
strong nonlinear dispersion. The qualitative changes between the states 
seen at different 0 may be related to the change of the sign of cl. (14) 
Second, states exhibiting a unimodal distribution, like that in Fig. 4, have 
been seen at all three values of 0. Third, it is possible to obtain different 
states at the same value of ~ and e. For example, at e =  1.3 x 10 -3 and 

= - 0 . 0 5 0 ,  states exhibiting both bimodal and broad peak-height dis- 
tributions have been observed. Fourth, in addition to these "unimodal" 
states, states which consist of isolated, high-amplitude peaks ("bimodal" 
states) are encountered as IOl is increased. 

The tendency to form strong, isolated peaks culminates in the data in 
Fig. 10 (~ = -0.069, cl = -0.047, c2 = - 5.74). Here, in strong contrast to 
the data at smaller 101, narrow, stationary peaks coexist indefinitely with 
the rest of the cell, which remains silent. These are the localized states 
recently reported by Niemela et al. and Anderson and Behringer and 
explored in detail by our own group. (16) We emphasize that cl is close to 
zero for all of our data. Thus, the qualitative changes seen when we change 
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Fig. 10. Spatiotemporal state consisting of two stationary, counterpropagating pulses, at 
e = 1.0 x 10 3, in a fluid with ~ = -0.069. In this figure, the total wave amplitude has simply 
been demodulated in space at each instant in time, so that the left- and right-wave 
components are not separated. With reduced nonlinear dispersion, narrow, stationary pulses 
are stable. 
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~, are most likely to be caused by the changes in the parameter c2. For the 
reduced value c2 = -5.74, the nonlinear dispersion is apparently no longer 
strong enough to pump wave energy out of the localized pulses, so they do 
not collapse at ~ = -0.069 as they do at smaller It p]. 

We can relate these observations to the computations of ref. 14 by 
noting that, as we decrease ~ from -0.021 to -0.069, we move the 
parameters (ci, c2) along the solid curve in Fig. 1 of ref. 14, starting near 
point "c" and moving towards point "d," Ref. 14 predicts that, as Ic21 drops 
below about 5 along this curve, bounded chaotic states should no longer 
be observed. This coincides with our observations, strongly supporting the 
interpretation that nonlinear dispersion is their cause. 

To summarize, weakly nonlinear, one-dimensional traveling-wave 
convection in an annular container can be modeled by a complex 
Ginzburg-Landau equation with coefficients that can be accurately 
measured and calculated. The dynamical states observed in this system 
consist in the repetitive formation and sudden collapse of narrow pulses. By 
comparing our results with numerical simulations of the model equation in 
the parameter limit appropriate to our experiments, and by systematically 
varying the strength of the coefficient c2, we can identify strong nonlinear 
dispersion as the physical effect which is dominantly responsible for our 
observations. 

These observations suggest several new experimental and theoretical 
directions. We have characterized the observed dynamical states 
qualitatively by describing the nature of the distribution of pulse heights 
and the fractions of the system which are "active" or "inactive." An 
appropriate, quantitative way to statistically characterize these states 
remains to be implemented, however. We have also not yet begun pursuing 
another approach to analyzing our data, namely, using the measured wave- 
amplitude fields to numerically determine which evolution equation the 
system actually obeys. It may prove possible to deduce the higher-order 
nonlinearities, as well as the cross-wave coupling, in this way. 

On the theoretical side, the first step suggested by these experiments 
has already been taken: Sch6pf and Kramer have shown numerically and 
analytically that bounded, chaotic solutions of Eq. (1) can exist for s = 0  
and g < 0, provided that re2] is large/14) It would now be of interest to per- 
form a more detailed comparison of these solutions with the experimental 
observations. In addition, a better theoretical assessment of the higher- 
order nonlinearities and of the interactions between oppositely-propagating 
wave components would now be of interest. 
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